Stratospheric Loading of Sulfur from Explosive Volcanic Eruptions1

نویسندگان

  • Gregg J. S. Bluth
  • William I. Rose
  • Ian E. Sprod
  • Arlin J. Krueger
چکیده

This paper is an attempt to measure our understanding of volcano/atmosphere interactions by comparing a box model of potential volcanogenic aerosol production and removal in the stratosphere with the stratospheric aerosol optical depth over the period of 1979 to 1994. Model results and observed data are in good agreement both in magnitude and removal rates for the two largest eruptions, El Chichón and Pinatubo. However, the peak of stratospheric optical depth occurs about nine months after the eruptions, four times longer than the model prediction, which is driven by actual SO2 measurements. For smaller eruptions, the observed stratospheric perturbation is typically much less pronounced than modeled, and the observed aerosol removal rates much slower than expected. These results indicate several limitations in our knowledge of the volcano-atmosphere reactions in the months following an eruption. Further, it is evident that much of the emitted sulfur from smaller eruptions fails to produce any stratospheric impact. This suggests a threshold whereby eruption columns that do not rise much higher than the tropopause (which decreases in height from equatorial to polar latitudes) are subject to highly efficient self-removal processes. For low latitude volcanoes during our period of study, eruption rates on the order of 50,000 m3/s (dense rock equivalent) were needed to produce a significant global perturbation in stratospheric optical depth, i.e., greater than 0.001. However, at high (.40°) latitudes, this level of stratospheric impact was produced by eruption rates an order of magnitude smaller.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magmatic vapor source for sulfur dioxide released during volcanic eruptions: evidence from mount pinatubo.

Sulfur dioxide (SO(2)) released by the explosive eruption of Mount Pinatubo on 15 June 1991 had an impact on climate and stratospheric ozone. The total mass of SO(2) released was much greater than the amount dissolved in the magma before the eruption, and thus an additional source for the excess SO(2) is required. Infrared spectroscopic analyses of dissolved water and carbon dioxide in glass in...

متن کامل

Mass-independent sulfur isotopic compositions in stratospheric volcanic eruptions.

The observed mass-independent sulfur isotopic composition (Delta33S) of volcanic sulfate from the Agung (March 1963) and Pinatubo (June 1991) eruptions recorded in the Antarctic snow provides a mechanism for documenting stratospheric events. The sign of Delta33S changes over time from an initial positive component to a negative value. Delta33S is created during photochemical oxidation of sulfur...

متن کامل

Evidence for Recent Large Magnitude Explosive Eruptions at Damavand Volcano, Iran with Implications for Volcanic Hazards

Damavand is a large dormant stratovolcano in the Alborz Mountains of northern Iran located in one of the most populous provinces, which could be adversely affected by tephra fall from Damavand. The youngest known eruption is a lava flow on the western flanks with an age of 7.3 ka. The volcanic products are predominantly porphyritic trachyandesite. Three major young pumice deposits, named here a...

متن کامل

Sulfur isotope evidence of little or no stratospheric impact by the 1783 Laki volcanic eruption

[1] Historic records and research have suggested that the 1783–1784 eruption of the Laki fissure volcano in Iceland impactedNorthernHemisphere climate significantly, probably as a result of the direct injection of volcanic materials into the stratosphere where the volcanic aerosols would linger for years to cause surface cooling across the Northern Hemisphere. However, recent modeling work indi...

متن کامل

Stratospheric sulfur and its implications for radiative forcing simulated by the chemistry climate model EMAC

Multiyear simulations with the atmospheric chemistry general circulation model EMAC with a microphysical modal aerosol module at high vertical resolution demonstrate that the sulfur gases COS and SO2, the latter from low-latitude and midlatitude volcanic eruptions, predominantly control the formation of stratospheric aerosol. Marine dimethyl sulfide (DMS) and other SO2 sources, including strong...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997